微信扫描二维码,即可将本页分享到“朋友圈”中。
2022-11-25 来源:中林国际集团 浏览数:390
氢能具有绿色、高效、无碳排放和应用范围广等优势,2022年3月,国家发改委、国家能源局联合印发《氢能产业发展中长期规划(2021-2035年)》,明确氢能是战略性新兴产业的重点方向,是构建绿色低碳产业体系、打造产业转型升级的新增长点。
01
氢能发展瓶颈
政策鼓励、市场火热,但叫好不叫卖却是目前氢能市场的现状。氢能汽车有数十年的研发历史,近年来,氢能相关法规逐渐完善,按照预期将迎来氢能源汽车的大爆发。但实际上,氢能汽车评价体系涉及运输、存储、车载、动力、安全、成本等多方面,热管理、载氢量、加氢标准等复杂的产业链问题无一不影响市场开拓。
日本政府2017年提出建设氢能社会,之后推出了氢燃料电池汽车、加氢站、还尝试了利用氢能给居民住宅供应暖气和热水。在工业领域,氢能热值高,适用于有高温热需求的工业部门。但是,氢能源成本高昂,在汽车领域的推广并不顺利。2021年初,日产公司宣布暂停与德国戴姆勒公司及美国福特公司开发燃料电池车的合作计划,将力量集中于发展锂电池电动车。6月,本田公司宣布停产旗下的氢能源车型,主要原因是成本过高导致销量惨淡。丰田公司也从此前大力研发推广氢能源车型,转向锂电池电动车、氢能源电动车共同发展。
若要实现氢能产业的大规模应用,面临的挑战主要是低成本高效能的燃料电池技术和安全高效的氢气储运技术。其中氢气储运难和安全性差是制约氢能产业发展的主要“瓶颈”。
首先,因氢气体积能量密度低,需35~70MPa的高压储运,导致氢气的储运成本高;其次,每座加氢站1500万~3000万元的建设成本高;再次,2019年在挪威、韩国等国家20天内连续发生三起因氢气储罐泄露引起的爆炸事故,暴露了氢气易燃易爆、安全性弱的缺点。
02
氨产业爆发式发展
氨(NH3)是关系国计民生的基础化工原料,广泛用于化肥、环保、军事、制冷等领域。同时,氨作为高效储氢介质,具有以下显著优势:
高能量密度。氨的体积能量密度约为13.6 MJ/L,1L液氨=4.5L高压氢(35.0MPa)=1200L常温常压氢。
液化储运成本低。氨只需加压至1.0MPa即可以液态形式储运,一辆液氨槽罐车载氨量可达30t(约含5.29t氢),载氢量较长管拖车(载氢量不到400kg)提高1个数量级,因此运氨成本(约0.001元/kg·km)也较运氢成本(0.02~0.10元/kg·km)呈数量级降低。
无碳储能。氨成熟的技术体系、标准规范及低成本合成、存储和运输,可实现季节性、远距离、“无碳化”的“氨-氢”储能。有研究表明,在目前主要研究的几类电制液体燃料技术(液氢、液氨、液化天然气、甲醇、有机液态储氢)中,电制氨的成本最低,效率仅次于其他电制液体燃料技术。
安全性高。氨的火灾危险性仅为乙类,爆炸极限(16%~25%)较氢(4%~76%)更窄,因此更安全。其刺激性气味是可靠的警报信号。
因此,发展以氨为储氢介质,有望解决传统高压储运氢的难题。
氨能利用分为传统行业和新能源行业两种。氨能在化肥、军工、环保、制冷等传统行业已得到广泛应用,是关乎国计民生的基础化工产业。近年来,在氨制氢、氨燃料电池、氨内燃机/燃气轮机等新能源领域,氨能利用迅速发展,用于实现氢能终端、氨能发电、氨能燃料等产业应用的无碳排放。
2021年3月,日本成功实现了70%的液氨在2000千瓦级燃气轮机中的稳定燃烧,并能同时抑制氮氧化物产生。参与此课题的IHI公司表示,有信心在2025年之前实现氨燃气轮机商业化。2021年10月启动的JERA公司氨能发电示范项目,就是IHI公司与JERA公司的合作。三菱重工公司则正开发4万千瓦级的100%氨专烧燃气轮机,计划在2025年以后实现商业化,引入发电站。
韩国也在推动液氨发电及氨氢混合发电技术联合研发与产业化,一种“双燃料绿色氨”发电模式正处于快速开发阶段。中国国家能源研究院与皖能集团联合开发的8.3MW纯氨燃烧器,验证了火电掺氨燃烧发电项目的可行性。此外,氨动力船舶技术也在飞速发展,韩国研发了以轻质柴油与氨为双燃料的8000t级氨动力加注船,完成了以液化石油气与氨为双燃料的超大型液化气运输船设计;日本住友商事与大岛造船正在联手打造全球首艘8×104t级氨动力散货船;挪威正在推进氨动力船及海上氨燃料加注技术研发,建立氨燃料加注网络,实现氨能航运的全产业链无碳化;上海船舶研究设计院自主研发设计的中国首艘氨动力7000车位汽车运输船获得挪威船级社颁发的原则性认可证书。
03
氢氨融合发展的可行性
初步估算表明,利用氨作为储氢介质具有显著经济性。例如:
如果采用氨分解制氢现场为加氢站供氢,可将加氢站的加氢成本降至35元/kg以下;
若开发耦合“氨制氢-燃料电池”的间接氨燃料电池技术,实现用户终端“氨变电”(NH3-to-power),发电成本约为1元/kW·h或乘用车燃料成本约为25元/100km,并使现有氢燃料电池系统的续航能力提升近1倍;
若采用氨作为车用燃料加注,加油站仅需稍加改造即可用于加氨,预计加氨站的改建成本较加氢站的建设成本可降低1个数量级。依照2050年中国建成1万座加氢站的目标,可节约近千亿元的基础设施建设投资。
合成氨已有一百多年发展历史,氨的生产、储运及使用已形成了完备的产业链、行业标准及安全规范。合成氨包括灰氨、蓝氨、绿氨3种合成工艺。灰氨合成工艺指由天然气蒸汽重整氢气及空气分离的氮气再通过传统哈伯法合成氨,该工艺已沿用上百年,但其高温高压条件造成巨大能耗,且伴随大量CO2温室气体排放。蓝氨合成工艺与灰氨基本相似,但会对工艺流程进行碳捕集与封存。绿氨合成工艺主要指全程以可再生能源为动力开展的电解水制氢及空气分离制氮再通过哈伯法制氨。
按照我国每年5000万吨的氨产量(其中80%来自煤制合成氨,20%来自天然气合成氨)来计算,2030年合成氨工业将排放2.7亿吨CO2。我国是可再生能源装机容量最大的国家,但因光伏、风电和水电等可再生能源存在间歇性、波动性和季节性等缺点,导致存在大量“弃风、弃光和弃水”现象。2019年,我国弃风、弃水、弃光电力合计约720亿kWh,其中弃风、弃光电量总和约为215亿kWh;2020年,我国弃风、弃光现象主要集中在“三北”地区,其中甘肃弃风率最高为13.8%,西藏弃光率最高为25.4%。发展可再生能源光解/电解水制氢耦合合成氨技术,可实现可再生能源电力的“消纳和调峰”,实现低成本、跨地域长距离存储运输,并与丰富的氨下游产业相结合。
因此,发展氨为储氢介质,通过液氨实现大规模的氢气运输,可贯通可再生能源、氢能和传统产业,开发出一条符合我国能源结构特点的“清洁高效氨合成→安全低成本储运氨→无碳高效"氢-氨"利用的全链条“氢-氨”绿色循环经济路线,对保障国家能源环保安全和社会经济可持续发展具有重要意义。
在氢氨融合技术路径方面,国家已出台相关鼓励政策。2022年4月,科技部发布《国家重点研发计划“先进结构与复合材料”等重点专项2022年度项目申报指南》,提出包括分布式氨分解制氢技术与灌装母站集成、氨燃料电池到掺氨清洁高效燃烧等与氨有关的技术。《“十四五”新型储能发展实施方案》提出依托可再生能源制氢(氨)的氢(氨)储能等试点示范,将探索风光氢储等源网荷储一体化和多能互补的储能发展模式列入“十四五”新型储能区域示范。
04
风光氢氨一体化实践
05
竞逐“风光氢氨”赛道
版权与免责声明:
凡注明稿件来源的内容均为转载稿或由企业用户注册发布,本网转载出于传递更多信息的目的,如转载稿涉及版权问题,请作者联系我们,同时对于用户评论等信息,本网并不意味着赞同其观点或证实其内容的真实性;
本文地址:http://h2fc.net/shichangfenxi/show-154.html
转载本站原创文章请注明来源:中国氢能与燃料电池网
氢能与燃料电池产业
微信扫描关注